SkyServer Web & SQL Traffic – The First Five Years

Vik Singh, Jim Gray

Microsoft Research

Ani Thakar, Alexander S. Szalay, Jordan Raddick

The Johns Hopkins University

Bill Boroski, Svetlana Lebedeva, Brian Yanny
Fermilab

Abstract: The SkyServer is an Internet portal to the Sloan Digital Sky Survey Catalog Archive Server. From 2001 to 2006, there were a million visitors in 3 million sessions generating 170 million Web hits, 16 million ad-hoc sql queries, and 62 million page views. The site currently averages 35 thousand visitors and 400 thousand sessions per month. We analyzed traffic and sessions by duration, usage pattern, data product, and client type (mortal or bot) over time. The analysis shows (1) the site’s popularity, (2) that the educational portal delivered nearly fifty thousand hours of interactive instruction, (3) the relative use of interactive, programmatic, and batch-local access, (4) the success of offering ad-hoc sql, personal databases, and batch job access to scientists as part of the data publication, (5) the continuing interest in “old” datasets, (6) the usage of sql constructs, and (7) a novel approach of using the corpus of correct sql queries to suggest similar but correct queries when a user issues an incorrect SQL command.

1 Introduction

1.1 Background

The multi-Terabyte Sloan Digital Sky Survey [1] – by far the largest digital astronomy archive to date [2] – is accessible online to astronomers and the general public. The raw binary data, stored as flat files on the Data Archive Server (DAS), has been made available for downloading (typically retrieved via wget, rsync, or curl). The data’s distilled scientific parameters are extracted into the catalog science archive, which can be accessed through the advanced query interfaces exposed by the Catalog Archive Server (CAS). The CAS is a collection of SQL Server databases [3] each storing a particular “release” of the SDSS data.

[image: image6.wmf]The study here analyzes CAS activity for the Early Data Release (EDR) and data releases 1 through 4 (DR1 – DR4). DR5 was just coming online as this study began. EDR stored 80GB with 14M objects and 50K spectra. The later releases were 0.5TB, 1.0TB, 1.5TB, and 2.0TB. DR5 is 2.5TB with 215M photo objects and 0.9M spectra – consuming ~10B rows spread across ~400 tables [4]. DR8 is projected to be 2.9TB (see Figure 1.) The SkyServer federates many web services that serve different scientific communities and functions – offering HTTP, SOAP, SQL, and batch access to the CAS:

 SkyServer.sdss.org or cas.sdss.org: a public Website offering access to the SDSS data, documentation on the data, and online-astronomy education in six languages (English, Japanese, German, Portuguese, Spanish, and Hungarian.)

 Collaboration and Astronomer portals: separate Websites operated for members of the SDSS collaboration (restricted access) and other professional astronomers in order to support longer-running queries on dedicated hardware. Collaboration members typically have exclusive access to data releases for a few months prior to their public availability.

 CasJobs (batch jobs for the CAS): A public Web service that allows users to upload personal datasets to private databases (MyDB) on Fermilab servers and submit long-running sql programs that convolve MyDB data with the CAS datasets [5].

Virtual Observatory (VO): A collection of Web services developed by the Astronomy community as part of their efforts to build the World-Wide Telescope. Although it is not part of the SkyServer proper, the VO traffic does appear in the SkyServer web logs.

2 SkyServer Hardware Infrastructure
The SkyServer runs on machines at Fermilab (see Figure 1 for architecture). The Virtual Observatory services are deployed on servers at The Johns Hopkins University (JHU). Since April 2001, we have been archiving the Web and SQL activity logs from the Fermilab and JHU servers. A collector running at JHU harvests the logs every few hours using a Web services interface offered by each SkyServer and CasJobs server (mirror servers in Europe, Asia, and South America have not been harvested yet). The harvested logs are aggregated in a publicly accessible database [6]. Table 1 shows the overall statistics as of 1 July 2006.

The logs have an opt-out privacy policy, but thus far no one has opted out [7]. Collaboration queries are hidden from public view but are tabulated here because no one in the SDSS collaboration opted out of this study. Hence, our database contains the full Web and SQL logs from Fermilab and JHU [8].

 2.1 Prior Work and Goals of This Study

Several prior studies used the SkyServer public logs: R. Lees, using ThinSlicer™, designed a datacube version [9]; R. Singh analyzed and visualized some session behavior [10, 11]; G. Abdulla analyzed term frequencies in the SQL logs [12]. In addition, T. Malik classified the structure of the SQL queries as part of her work on query-result caching [13]. This report analyzes long-term SkyServer usage patterns.

Our goals are to:

(1) Characterize traffic volume and trends based on request-type (Web, Web-service, downloads, analysis…).

(2) Segment the user population: astronomer, student, tourist, crawler, downloader, and others.

(3) Categorize the session behavior of each user segment.

(4) Characterize how users and bots use SQL.

(5) Assess the relative interest in datasets over time.

(6) Use our analysis to optimize the database design.

2.1 SkyServer Web and SQL Log Harvesting
[image: image7.wmf]The Web and SQL logs represent 75 system-years of activity collected from 60 server logs. They are a wonderful public resource, but are not perfect. Each log has gaps. Some logs have records with incorrect or missing values due to bugs in our logging software. Much of the traffic is from crawlers and robot downloaders, which consequently swamps the mortal traffic (people interacting directly with the Website.)

There are also anomalies, like a Virtual Observatory registry manager that generated 42 million Web hits polling for changes in the registry. Therefore, any analysis using this log data is approximate, and consequently, should be conducted with an understanding of the site structures.

We cleaned and normalized the HTTP/SQL logs and built ancillary data structures for storing -

IP Names: Mapping IP addresses to the institutions owning the respective address blocks.

Sessions: Request statistics, clustered based on time-sequences, per IP address.

Templates: Skeleton SQL statements with parameter numbers replaced with “#” and skeleton Web requests separating the stem (the url to the left of the “?”) from the parameters (the right-side)

Agents: For each web-agent string, we categorize the agent (e.g. MSIE, GoogleBot, Perl) and type (e.g. browser, spider, bot).

Page Views: to distinguish Web hits from page views.

The cleanup and normalization tasks took several months to complete. Figure 2 shows the resulting database design. The normalized database is 35GB (reduced from 180GB), and has been made available online [8].

3 Web-HTTP Traffic
3.1 Web Hits and Page View Traffic

Figure 3 summarizes the monthly Web traffic. The top line shows the total Web traffic on all servers measured in http requests (hits). The Web-hit volume has doubled each year. The hits per month fit an exponential regression (205% per year). In mid-2006, the logs averaged ~35K unique visitors and ~380K user sessions per month. As we will see, much of this growth comes from programs (bots).

[image: image8.wmf][image: image9.wmf]How many of these Web hits are just incidental to producing a Web page or Web-service answer? For example, displaying the SkyServer home page generates twenty hits with zero-caching. The Web log stores an entry for each request-reply pair (a hit), but many of these entries correspond to ancillary source code (e.g. a .css style sheet for a Web page or a metadata .asmx file for a Web service), images (e.g. for every .gif image on the home page), errors, or redirects.

Page views measure how many complete answers the servers delivered to users or bots. We define a page view as any Web hit that (1) responds to a GET, HEAD, PUT, POST HTTP, or soap request, (2) is not an error or redirect, (3) delivers information (HTTP status codes 200-299), (4) is not a noise type (e.g. .gif, .png, .txt, .css, .ico, etc.), and (5) does not correspond to the BigBrother monitoring service or the VO Registry Administrator.
Out of the total 171M hits, 90% were requests, 4% returned errors, and 6% were redirects. Ignoring the BigBrother and VORegistry accesses, we are left with 65 million page views. Figure 3 plots these page views over time – displaying the same yearly doubling as Web hits.

There are daily, weekly and seasonal access patterns: a mid-day peak, a Tuesday peak falling to a valley on the weekend, and relatively heavier traffic between the months of November and March. Figure 3 shows the two dominant patterns: (1) year-over-year traffic doubling and (2) high short-term variability with huge peaks and some lulls.

The statistics for HTTP hits are 65% get, 25% put, and 10% head. Only 12% of the hits contain a reference string declaring where the request originated; of these, 98% of the referrals comes from SDSS sites, 1% comes from Google (235k), and the remaining 1% comes from 3,000 other sites.

[image: image10.wmf]Table 2 provides the relative frequencies of the most accessed Web page types. This does include 78K hacker requests attempting to execute various programs on the server, but the majority of the requests asked for Web pages (e.g. .asp, .aspx) or Web services (e.g. .asmx).
3.2 Session and User Segmentation

3.2.1 Clients

One of the main goals of this analysis is to characterize the way people and programs use the site. We segment human users into four broad categories:

Scientists: People analyzing the SDSS data.

Students: People learning about science.

Tourists: Users visiting the site out of curiosity.

Administrators: People, like us, analyzing site traffic.

We segment program behaviors as:

Analyzers: Programs running complex queries on SDSS data (e.g. CasJobs).

 Copiers: Programs that systematically download parts of the SDSS database.

Spiders: Programs that crawl the Web pages to build an index.

 Administrators: Programs that check site status, harvest Web logs, or maintain registries.

We searched for ways to categorize page views into one of these eight categories, but had only modest success.

3.2.2 Categorizing Clients with Agent Strings
The logs preserve user anonymity. Each Web request carries an agent string that is supposed to declare what kind of agent browser or program generated that request. Sometimes the agent string tells what the client is (e.g. Google, BigBrother, Perl, Safari, Firefox), but often agents masquerade as Internet Explorer (MSIE) or some other popular browser in order to obtain certain behaviors or to bypass firewalls. Due to these conventions, we had to classify users based on a combination of their (1) agent string, (2) IP address, and (3) behavior during a session. One nice feature regarding sessions is that a user’s IP address during one remains constant (by definition). However, a session may involve different programs or several browser interactions. In addition, the user’s IP address may change from day to day – so at best, these three attributes can only reasonably approximate the user’s segment.

Using the agent string can classify some of the hits as corresponding to analysts (24 million), bots (19 million), or administrative clients (18 million for BigBrother) with a residue of 118 million agent strings that look like browsers. We correct the agent-strings for the 42 million VO-registry probes (VO-Registry rather than MSIE), leaving us with 76M hits. These classification results, based purely on parsing the agent string, can be found in the WebAgent table (Figure 2). It sub-classifies the bots into 78 groups (e.g. Google, Slurp, etc.), programs into 10 groups (e.g. Python, Java, etc.) and the browsers into 11 groups (e.g. Firefox, MSIE, Safari, etc.). We further improved the classification by referencing the IP domains [14]. Ignoring the administrative traffic, the top two sub-groups include MSIE with 47 million hits and 19M page views, and Python with 10 million hits and 9M page views.

3.2.3 Sessions

The logs record each client’s session – the page view and SQL request sequence per IP address. We arbitrarily start a new session when the previous page view for an IP address occurred over 30 minutes ago (i.e. a think-time larger than 30 minutes starts a new session). We base our decision to use a thirty-minute (1,800 second) think-time on the Figure 4 plot, which graphs page-view inter-arrival time frequencies by powers of two. A thirty-minute slot captures 98% of the inter-arrival buckets. The graph approximates a power law for times between 10 seconds and 10M seconds (100 days). Wong and Singh [11] chose the same 30-minute cutoff in their analysis, and we are told that MSN and Google use a similar time window.

[image: image11.emf]As mentioned earlier, we excluded page views from BigBrother (17M views and 4.2M SQL queries) and the VORegistry administrator (42M views). Although they comprise a significant market share (34% of all hits and 21% of all SQL queries), they just boringly probe the servers with well-understood traffic patterns.

This leaves 65,435,696 page views and 16,123,600 SQL queries in 2,985,016 sessions (refer to the Session and SessionLog tables – indexed by sessionID, and rankInSession). The 65,435,696 SessionLog rows record the session request sequences (with pointers to the WebLog and SqlLog tables) along with timestamps, query templates, and summary information (see Figure 2)

3.2.4 Session Classification and Diversity

Our first task is to recognize and exclude spiders so that we can study the behavior of analyzers, copiers (data downloaders), and human clients. If a client’s AgentString declares a client IP address to be a spider, or if the client IP address visits robots.txt, then we categorize all sessions from that IP address as spider. This eliminates 1.4M sessions, 14M page views, and 328K SQL requests. Spiders composed ½ the sessions, 18% of the page views, and 2% of the overall SQL traffic.

We found recognizing the other categories to be more challenging. We conjectured that people have irregular think times, while programs have a regular temporal pattern. Both of these conjectures turned out to be false. Both people and programs appear to follow a power-law distribution of think times – therefore, think-time is not a very good feature for distinguishing users (see Figure 4.)

[image: image12.emf]
[image: image13.emf]Figure 5 shows the frequency of session durations and session sizes (number of requests). Both graphs bucket the populations in powers of two (e.g. (log2(requests)(and (log2(duration)(). The graphs show interesting patterns: Session lifetimes beyond 1000 seconds seem to follow an approximate power law behavior (-1.4 slope) with a sharp cusp at short sessions. Also, the number of requests per session follows a simple power law all the way through.

We conjectured that spiders rarely re-visit the same page in a session. Further, we conjectured that copiers and analyzers systematically crawl the database with the same request but with different parameters (i.e. passing different numerical inputs into the same table-valued function), as well as believed that people’s browsing behavior is composed of the following three manners: they visit several pages, may return to a page, or may dwell on a page as they formulate queries.

These conjectures appear to be generally true. For example, consider the sessions in Figure 5 that span more than 3 days (lasting more than 250k seconds). Statistics for the top 5 are shown in Table 3. These sessions originated from the five main institutions performing systematic data downloads. Four of the institutions used the free-form sql interface (x_sql.asp or SkyQa.asp) and two used the pre-canned sql (x_rect) commands (which do not get recorded in the log). One institution uses the very popular GetJpegObj.asp call, which issues over a dozen different SQL calls to generate an annotated jpeg image on-the-fly from the database. The session with the most requests used x_sql.asp to issue the following query with 2.4M different numerical input pairs:

[image: image14.wmf]select count(*)

from photoprimary

where (htmID >= # and htmID <= #)

We define a session’s request diversity as the ratio of requests to request stems (Web URLs to the left of the “?”) plus SQL templates (statements with the non-identifier numbers replaced by “#’). The Web stems are in the WebCommandStem table and the SQL templates are in the SqlTemplate table (see Figure 2). We expect spider sessions to have high diversity, copier sessions to have low diversity, and people to have sessions with intermediate diversity. This hypothesis works very well at the extremes, but we were unable to develop a crisp, general classifier from this approach. We found no clear break between the diversity of people, programs or spiders – the data looks like a continuum.

In the end, we were unable to exercise a graphing method that could accurately delineate human users from bots. Some statistics do show clear bot behavior (100 hour sessions or 1M page views in a session (!)), but the typical spider session is short (10 page views in 100 seconds); indeed, this is why ½ the total sessions correspond to spiders (see Figure 5).

The simplest heuristic we could come up with for classifying sessions as mortal was to find all sessions that were not administrative, not obviously a spider, not obviously a bot, lasted between one minute and 8 hours, and involved at least 4 page views or SQL requests. There were about ½ million such sessions.

Figure 6 shows the page-view and SQL request traffic for mortal sessions when averaged over 3-month windows. Web request traffic grew at 75% per year, while mortal SQL traffic quickly grew and stabilized at ~30K requests/month. In comparison, the overall traffic doubled every year (Fig 3), and thus, there is a relative increase in bot/spider usage. One interesting feature of this underlying data is that it exhibits a yearly traffic trend with a dip in the summer and fall, and an increase during winter and spring.

4 Traffic by Source

4.1 Traffic by IP address

Each Web log entry and most SQL log entries carry a user IP address. A reverse IP lookup converts this address to the name of the institution owning the corresponding IP address block. Unfortunately, many of the IP addresses resolve to large IP-address blocks that are “sub-leased” to many organizations. For example, over 1,000 of the blocks mapped to the Amsterdam RIPE network, which, in several cases, does not disclose its individual sub-leases. Nonetheless, a combination of automatic and manual resolution techniques mapped most of the SkyServer’s 1M unique IP addresses to ~11k IP domains.

Table 4 shows the Web and SQL traffic from the most active institutions (includes bots and spiders but excludes administrative traffic). As we can see, most of the traffic derives from programs that crawl the Website or download data. Due to bugs in the logging software, some records failed to record the IP addresses, thereby requiring us to link these records to an Unknown identifier.

Table 5 shows the traffic counts for domains that contain any of the following terms: “university”, “college”, “school”, or “district”. This table indicates that most traffic comes from colleges and universities.

[image: image15.wmf]
4.2 Traffic by Most Popular “verbs”

Table 6 shows the importance of spatial queries in Astronomy research. Of the 13.3M SQL queries, 5.8M involved spatial search functions (e.g. fGetNearbyObjEq()), and all but one (“default”) of the next 5 most popular verbs represent variants of the nearest-neighbor query type.

4.3 Traffic on Parts of Web Site

Again, subtracting out the administrator and spider requests, Table 7 provides the traffic statistics in the Website partitions approximately along the hompage’s menu hierarchy (tools, get data, projects, help, ….). Most traffic goes to the tools that retrieve data or display images. The educational activities portal represents the third most popular portion of the site, with over 4M page views [image: image16.emf]and 600k sessions.

[image: image17.emf]
4.4 Traffic by Language

Figure 7 shows the page view traffic aggregated by language (English, German, Hungarian, Japanese, Portuguese, and Spanish). The non-English traffic largely reflects people using the site to learn more about SDSS or astronomy education. The recent dramatic rise in the German traffic after 4 years from 2k to 80k page views per month is most likely due to recent efforts to improve the German translation of the project website. There has also been steady traffic growth for the Spanish, Portuguese, and Hungarian versions.

4.5 Traffic on the Educational Website

[image: image18.wmf][image: image19.emf]We are particularly interested in how humans interact with the Project websites that teach astronomy lessons. Overall, this portal received 4.2M page views. Table 8 shows how these page views are largely concentrated on the Advanced and Basic project tabs. With bots and spiders excluded, there were 618K sessions involving at least one project page. The 297K sessions involving two or more project pages suggest that the student was reading the material rather than just browsing. Those sessions had 7.4 million page views – incurring more than 21k SQL queries and equivalent to delivering more than 47 thousand hours of instruction. Few astronomy textbooks or teachers can match that record.

4.6 Traffic by Data Release

The SDSS has released six versions of the “Best” catalogs that contain all the data processed with the most recent software. These versions are called the Early Data Release and Data Releases 1 through 5 (EDR, DR1-5). In addition, there are Target DR1-5, which contain the data snapshots necessary for selecting spectroscopic targets. There is also a Runs database, mosaiced to produce the “Best” database. 99.98% of the overall traffic goes to the Best catalogs. DR5 was just coming online when the logs for this study were frozen. In the frozen set, the SDSS Servers answered approximately 16 million SQL queries (excluding spiders and administrators).

Each catalog has been released with public ad-hoc SQL query support. Figure 8 shows the relative traffic (measured in SQL queries) per catalog. It appears that each dataset has had comparable traffic, although the newer ones have had less time to garner traffic – reflecting the increased interest in datasets over time.

Figure 9 shows that in 2003 the SQL traffic quickly rose to about 10,000 queries per day, and then held fairly steady at that saturation level. It also indicates that each product has received between 400K and 600K SQL queries. Note, that newer products have had a shorter time to accumulate “hits.” The figure also shows that interest in a product “spikes” soon after it is released, and then declines as newer products get [image: image20.emf]released. Interestingly, the oldest product, DR1, still gets about 40K SQL queries per month. This shows that once a data product is published, it needs to stay online forever – much as scientific literature must remain available to allow others to read, verify and extend previous work.
4.7 Traffic by Professional Astronomers

The SkyServer Website is the easiest way to access the Sloan Digital Sky Survey catalogs. There are three services set up for professional Astronomers. Some “collaboration” servers are set up for members of the SDSS collaboration to permit early data access (i.e. “peer review”), enable professionals to run longer queries, and to support a more spartan user interface. There is also a public service version named “/astro/”, which provides the same /collab/ spartan interface. In addition, there is a public CasJobs (Catalog Archive Service Batch Jobs) service that enables users to create personal databases on the server (MyDB) to upload data and save query results to (Section 7 discusses CasJobs in more detail).

The “/collab/” site delivered 3.4M page views and 2.4M SQL queries; the “/astro/” site delivered 9.2M page views and 3.6M SQL queries; CasJobs v1.1 delivered 1.1M page views and executed 209K jobs. The public SQL servers received three times more traffic than the collaboration ones (see Figure 10.) We will discuss some of the common SQL queries issued by professionals on the site in Sections 6, 7.
4.8 Traffic by Server

As of mid-2006, there were 36 Web server logs and 15 SQL server logs being harvested. Three servers handle 74% of all Web requests and the top 3 SQL servers service 65% of all SQL requests.

The public SkyServer has a 10-minute 100K row limit; the astro and collab sites have a 1-hour 500K row limit; the CasJobs long queue has an 8 hour limit; the CasJobs collab site has a 24 hour one.

The Web servers are lightly loaded except when composing JPEG images on demand using the fragment images from the database (the ‘GetJpeg’ verb in Table 5). This call retrieves and converts several JPEG’s from the database into a bitmap, decorates the bitmap with information fetched from the database, clips the result to form an image centered on a desired spot, translates the bitmap into a JPEG image, and finally delivers the result via soap over http. This entire image-processing task can consume 0.3 to 5.0 CPU seconds depending on the image size and query complexity.

Fermilab uses a load-balanced pool of three Web servers to service these tasks. The system schedules the less demanding tasks on a round-robin basis (Figure 1). The average network traffic on these servers is 1.5 MB/s (~10 Mbps) – but peak traffic can be whatever is available. Outbound bandwidth is ~100x inbound bandwidth.

5 CasJobs and MyDB – Batch is Back

CasJobs (Catalog Archive Server Batch Jobs) provides a Web-service soap interface to allow users to submit unrestricted query scripts in batch mode and upload data and save results to personal databases on the server (MyDB). CasJobs is described in detail in [3, 5] and is publicly available on the Web site. Although a login is required to submit a background job or create a database, anyone may create a CasJobs account.

As described in [5], the primary motivations for CasJobs were to

· Separate the quick queries (that finished in under a minute) from the long queries that took minutes or hours to execute (bogging the server down for everyone else).

· Provide each user with a server-local scratch workbench database to hold intermediate query results and bring the analysis closer to the data as much as possible (this avoids moving large intermediate data results across the Internet).

· Provide simple load balancing among the servers by distributing the queues across the server pool.

5.1 CasJobs Queries

CasJobs processed 209K jobs since September 2004. The CasJobs Administrator did 60% of these jobs (scheduling and reporting jobs). In what follows, we exclude the administrator, leaving 77K jobs to consider, of which, 59K correspond to syntactically correct SQL queries.

There have been 537 distinct CasJobs users. Virtually all of the “big” queries were IO bound (disk bound). CPU utilization rarely consumed 10% of the elapsed time. Put in another way, the total CasJobs elapsed time was slightly more than one year, and the total CPU time was less than 10 days (229 hours). Faster CPUs would not really help, but more RAM and disks would speed up the average query run-time.

Figure 11 displays the CasJobs activity (jobs, elapsed time, CPU time, rows returned) of all 537 users sorted by the number of jobs they submitted. It shows no clear breakpoints: some users submitted a few big jobs, some users submitted many big jobs, some submitted many small jobs, many submitted a few big jobs, and many submitted a few small ones. When sorted by jobs, the top 10 users submitted 57% of the jobs; sorted by time, the top 10 used 27% of the time, and sorted by rows the top 10 retrieved 51% of the rows. When we rank users by the number of requests they submitted, the ranks v. requests graph exhibits clear power-law behavior (resembling a 1/f distribution), indicating that users do not have a general workload scale.

Figure 11 also shows that CPU time (blue) is far smaller than the wait time (green) in almost all cases – even though these are 2-way or 4-way multiprocessor servers. It also shows that the system returned about 20K rows per CPU second and 500 rows per elapsed second. CasJobs returned 16 billion rows in all (about 1TB) – twice the number of rows returned by the public server, four times the number returned by the “/astro” server, but only 60% of the number returned by the “/collab” servers (see also Figure 10).

The CasJobs service saved considerably bandwidth and user wait time. When it was first introduced, the public “big queries” transitioned over to CasJobs. CasJobs enables users to do more sophisticated and high-bandwidth analysis near the server (data) without having to provision their own site. Of the 59K valid CasJobs, 85% are simple SELECTS, and about 9K are complex programs that create tables in MyDB, define local variables, constants, and functions, and then do multi-step analysis of the SDSS catalogs with the user’s MyDB data.

5.2 CasJobs Users

Figure 12 shows scatter plots between the various per-user average measures and approximate trend lines to emphasize characteristic correlations. The left hand figure shows the number of rows returned v. elapsed time. The trend line corresponds to a 750 rows/second average. For an elapsed time of about 100 seconds, one can see the sharp cutoff at around 500,000 rows (also noticeable on the right-hand plot in Figure 11).
Figure 12 shows that CPU time and elapsed time track one another quite well, but the slope is less than one. The characteristic ratio is about 34 seconds of elapsed time for 1 second of CPU, as measured on the high end, compared to a factor of 100 for short queries. This indicates that most of the workload is heavily I/O bound.

High-end users tend to use a smaller number of “stems” than the lower-end users. This trend can be clearly seen from the third panel in Figure 12: with more requests, the number of stems falls away from the envelope. This most likely means users with lots of jobs are refining their complex queries – or performing the same spatial searches but with different parameter values each time. This vindicates one of our main arguments for CasJobs – to avoid wasting bandwidth for repeated queries during the refinement process.

The average query is about 100 tokens long, runs for about 10 minutes, uses 15 CPU seconds, and deposits 250K rows into MyDB. Since CasJobs was inaugurated three years ago, traffic has been fairly steady at about 10 queries per hour (although there have been peak periods of 700 queries per hour).

6 Query Analysis
Of the 20.7M logged SQL queries, there are 10.3M distinct queries. 9.0M of these statements are syntactically correct, and 7.4M returned at least one row – suggesting they were error-free at run-time. When one replaces all the numbers in a query with a “#” symbol, the set of queries shrinks to 138K templates, of which, 102K are syntactically correct and 78K return results.

6.1 Queries from Bots

Robot sessions reveal very few templates compared to their corresponding raw SQL queries – typically thousands of queries in a session referring to just one query template. If we say that a session with the same template repeated 4 or more times (session.SqlStem > 4 * session.sql) equals a robot, then we have 10.9K robot sessions representing 15.7M SQL queries with only 12K SQL templates – the average bot is reissuing the same template 1,300 times! The residue holds 85.8K sessions corresponding to 417K SQL queries.

The robots typically perform spatial queries. Table 9 shows the counts for the most popular functions. All but two of the functions in Table 9 are spatial data lookups. Many robot queries systematically vary the values for parameters ra,dec, which describe the bounding box size (via the SQL between construct). 610 of the bot templates (~5%) make use of this construct. 10K of the residue (about 12% of the 74K valid templates from mortal sessions) also make use of this construct. After failing to “teach” users to use the spatial search functions, we added an ra-dec index to optimize this particular bounding-box construct.

6.2 Queries from Mortals

We define mortal queries as those in sessions where the number of distinct SQL templates is at least 20% of the actual SQL queries (that is, the typical query is not re-used more than 4 times) and where a session’s time window is less than 8 hours. Further, we define valid mortal queries as those that return at least one row from the database.

There are 85k mortal sessions with 412K queries, of which 271K (66%) are valid mortal queries. The typical session has six SQL queries and lasts thirty minutes (see Figure 11). The median valid query ran for two minutes (127 seconds) or two seconds of CPU time, and returned 3.5K rows. As Figures 11, 12 and 13 indicate, these numbers have huge variance – the median and average differ greatly (for example, the average number of rows returned was 187K, not 3.5K).

The 271K valid mortal queries also exhibit a wide range of complexity. There are 74K valid mortal templates, of which, 71% use the select-from-where syntax, 14% use the select-from-where-orderby syntax, and 6% are select from a table-valued function – so 91% follow the basic select-from format. Some queries have more than 80 select clauses; some have 7 group-by clauses, and there is considerable use of outer-joins and many other advanced SQL features. Approximately 13k templates (18%) involve a spatial join using one of the table valued spatial functions. Note, that these numbers are slightly skewed by the 50+ sample queries made available on the SkyServer Help page [15]. Many users typically run these either with or without modification until they feel proficient enough to formulate their own SkyServer SQL queries.
6.3 Term Frequency within SQL Queries

As in Abdulla [12], we analyzed token frequencies within the SQL templates. We further reduced the SQL query templates by removing parentheses, table aliases, database and table prefixes, and function parameter names. We also substituted one-word symbols for strings, comparison operators (e.g. '>=', between), bitwise operators, arithmetic operators, logical operators, and for multi-word SQL keywords such as group by and order by (see Section 7.6 for more details). This results in just ~98K query templates. The templates mention all 44 tables, but 493 of the 2,228 total columns and 36 of the 109 built-in functions are never mentioned.

When graphed against their corresponding term ranks, the SQL template term frequencies exhibit a clear Zipfian distribution (see Figure 14). Although a well-known behavior for natural language corpora [27], we found this result somewhat surprisingly since SQL is a programming language, which abides to a strict, limiting context-free grammar, so one might not expect to see their term frequencies (post-template reduction) to follow such a strong power law behavior.

We dive deeper into the language statistics by separating SQL verbs, column names, and table names (see Figure 15). The graphs in this figure reveal that the distributions are not exactly Zipfian – but do show the term frequencies declining very sharply. The correlation of SQL constructs (select-from-where and case-when-then-end) greatly influences this “staircase” effect.
7 PRESQL: Prior Repeated Execution of SQL
7.1 Motivation

In this section, we digress slightly to describe a novel strategy, inspired by our analysis work on the SkyServer query logs, for SQL debugging. We nickname the framework PRESQL (‘preschool’), which aims to take advantage of the query repetition in the SkyServer SQL log to find nearly identical, previously asked, error-free script matching the user’s potentially erroneous SQL input. Our approach uses a notion of a distance function, machine learned from the query logs, to measure the similarity of two query statements. We show how PRESQL can be used to provide users correct query recommendations.
Before analyzing the query strings, we first studied the query error statistics in the SQL log. We learned that many of queries resulted in syntax or run-time errors. Out of the ~10M unique queries logged, ~1M had syntax errors, while ~3M encountered run-time errors.

How terrible would it be for a user, who finally figured out how to write a complex spatial join, to learn that his or her query, after running for 8 hours (actually quite common – see Figure 13), blows up because the temporary table storing the results had insufficiently sized fields? Similarly, what about a new user (such as a student), unfamiliar with SQL or the SkyServer libraries, who tries to generate a query from scratch, but is unable to resolve the query’s minor syntax errors. In this paper, we outline a strategy we call PRESQL (‘preschool’), which makes use of the existing query logs to improve the user query experience. PRESQL takes a lazy approach to SQL testing by relying on the statistics of previous, similar executions to debug a new user query.
7.2 Methodology
In order to cross reference a user's query to previously issued query logs, we would need some sort of 'fuzzy' comparison function specific to the SQL grammar. For example, 'select foo.a, foo.b from alphabet foo' and 'select bar.a, bar.b from alphabet bar' fail to satisfy a string equality test, even though both queries are functionally identical since table alias names in SQL are arbitrary and do not affect the resulting rows. However, what happens if there is no functionally identical query log to the user's current query? In this case, we want to find near identical queries. This means, even if a candidate query is missing a couple of 'select' columns or an 'order by' keyword, it should still be a potential query match (see Experiments section for examples of nearly identical query pairs).
7.3 Syntactic v. Functional Similarity
But what does it mean to be 'identical'? Does this mean finding queries that are functionally similar (i.e. return the same rows) or are syntactically (i.e. textually) similar? In our work, we chose to focus on finding syntactically similar queries. Information retrieval and NLP research provide us with many modern techniques for efficiently and effectively processing text [27]. Plus, even if we chose to focus on functional similarity - a challenging task since it requires comparing and representing very large sizes of resulting query records - we would be unable to since the SQL logs do not bookkeep query results (as this would quickly consume all the database storage). One should note that syntactic similarity, in many instances, captures functionally similar queries (as will be seen in the Experiments section). This makes sense, since queries with near identical text may, for example, follow the same 'join' sequences with just minor 'where' conditional differences, thereby returning similar resulting rows. Therefore, in many cases, syntactic similarity can give us functional similarity for free.

7.4 Distance

Notice that we not only want to find syntactically identical queries, but the closest queries with some measurably small difference. Instead of referring to this notion as a comparison function, which sometimes refers to equality testing, we will call it in this paper a 'distance' or 'similarity' function (and in other work may be referenced as a kernel function [29]). This distance function takes in two query strings and returns a decimal value [0.0, 1.0] denoting the probability of a match - where 1.0 is near identical and 0.0 implies no resemblance.

The moral here is once we have a distance function which can return the probability of two queries being a syntactically identical match (with respect to the SQL grammar), we can then find top matching queries to the user's given query by linearly scanning the SQL logs. Since these logs bookkeep information like elapsed time, number of rows returned, error codes and messages, we can infer, with probability proportional to the distance value, whether the user query will complete with no errors in a sufficient time period. Additionally, if the user is having trouble writing a particular query, we can return similar candidates in a spelling suggestion manner - as commonly done by search engines, word processors, and inter-development environments (IDE’s).
7.5 Similarity
Unlike in the case of unstructured text, here we have the luxury of processing relatively short query strings that abide to a strict parsing grammar. This means we do not need to worry so much about feature selection, word ambiguity, stopword removal, dimension reduction, etc. Additionally, users on the SkyServer site (excluding CasJobs) may only ask SELECT read-only queries - thereby restricting the usage scope of the SQL language. When analyzing the top 500 most frequently asked queries, we found that their key differentiating features included terms in the 'select', 'from' and 'join', 'where', 'group by', and 'order by' phrases. One should note that for each of these features, the order of the terms does not modify the underlying query logic. For example, 'select foo, bar from gibberish' and 'select bar, foo from gibberish' return the same tuples but just in a different display order. As such, we designed our distance function to be term-order agnostic. Our function tokenizes the two query strings and compares the resulting tokens (or unigrams) with respect to each feature set ('select', 'from', 'where', 'group by', 'order by').

7.6 Cleaning
In order to make this similarity strategy effective, we first need to clean or “templat’ize” the two raw SQL inputs of any arbitrariness (referred to in 6.3). To do this effectively, we bootstrapped to Zql [30] (an open source SQL parser) 47 additional cleaning rules that effectively template out the arbitrary parts of a SQL query. These rules removed case sensitivity, unnecessary whitespace, commas, table-valued function parameters, table aliases, substituted 'temp' for temporary table names, 'logic' for conditional operators, 'string' for strings, 'num' for numbers, coalesced multi-word keywords into single tokens ('order by' to 'orderby'), etc.

Here is an example of a SkyServer SQL query before and after cleaning:

Before …

SELECT s.ra, s.dec FROM #upload u, SpecObj s WHERE u.up_plate=s.plate and u.up_mjd=s.mjd and u.up_fiber=s.fiberid select p.objID, rc.name as rc3_name, s.name as stetson_name, p.ra, p.dec, ph.name as type, p.u, p.g, p.r, p.i, p.z, o.distance from (((PhotoPrimary p inner join PhotoType ph on p.type = ph.value) left join RC3 rc on p.objid = rc.objid) left join Stetson s on p.objid = s.objid), dbo.fGetNearbyObjEq(180,-0.5,3) o where o.objid = p.objid and p.type = ph.value order by o.distance

After …

select ra dec from temp specobj where up_plate compare plate logic up_mjd compare mjd logic up_fiber compare fiberid select objid name name ra dec name u g r i z distance from photoprimary innerjoin phototype on type compare value leftjoin rc3 on objid compare objid leftjoin stetson on objid compare objid fgetnearbyobjeq where objid compare objid logic type compare value orderby distance

To speed up the distance function, we preprocessed the cleaning of all the SQL query logs. To do this, we first ran a 'select distinct' over the logged query strings, which returns back 10.3M query logs (about a 50% space reduction). After running the above cleaning strategy over this distinct set of queries, we get back just 98K templates (more than a 99% space reduction). Our cleaning strategy provides clear evidence of high query repetition in the SQL logs, and thus, a strong motivation for taking advantage of this clear repetition to infer whether the user's (apparently most likely been asked before) query has related query matches in the log records or has successfully been completed in the past.

7.7 Jaccard Coefficient
As we alluded to in the Similarity section, we want to compare the similarity of integral query parts in an unordered fashion. We proceed by cleaning the two query inputs passed to our distance function. Then we parse out and tokenize the 'select', 'from', 'where', 'groupby', and 'orderby' attributes into separate feature sets for both queries. Now we wish to measure the similarity of the respective feature set pairs separately ('select' sets, 'from' sets, 'where' sets, 'groupby' sets, 'orderby' sets) to generate a vector result of the following format: <select_sim, from_sim, where_sim, groupby_sim, orderby_sim>. To determine the similarity value for each feature set pair, we resort to a traditional IR metric known as the Jaccard similarity coefficient [33], which is defined as the cardinality of the intersection of two sets divided by the cardinality of the union of the two sets (see Figure 5). This is a fairly intuitive similarity metric: it divides the size of the overlap by the total number of elements in both sets to denote a measure of the commonality between the two sets.

[image: image1.png]AN

B|/|A

u

B|

Figure 16: Jaccard Similarity Coefficient.

7.8 Term Weighting
However, note, that when working with sets, we need to remove duplicate elements in order to preserve a set's uniqueness property. This means that the traditional Jaccard similarity coefficient weighs each term match equally. Let's think this through: Should a 'select' keyword match, which must occur in every query statement, really have the same similarity weight as a 'fgetnearobj' table name match? Recall the term frequency power law graph in Figure 14, which clearly shows that SQL terms do not occur equally, and therefore should not be weighted as such.

To cope with Zipf's law, we take another page from IR research by representing each term by its TF*IDF score [31], which requires multiplying a log transform of the term's frequency in the query string (in IR speak, a query here refers to a 'document') by its inverse document frequency, or the term's popularity across the entire query log corpus, which can be computed by log transforming the value of the total number of queries divided by the number of queries which contain that term (see Figure 17). In other words, TF*IDF weighs a feature proportional to its redundancy in a document multiplied by its rarity factor across all documents. This means rare table names will be given relatively high TF*IDF scores, while very frequent terms like 'select' will be demoted to a weight of 0 ('select' occurs in all query strings, so its document frequency ratio is 1, and the logarithm of 1 is 0). Finally, also in IR fashion, we Euclidean normalize the TF*IDF weights across feature sets. Normalizing scales the term weights appropriately, and can trim some of the error introduced by our assumption that the features weights can be computed independently of one another (since we compute TF*IDF scores with respect to unigrams and not bigrams, trigrams, etc.) [33].

 [image: image2.png]

 [image: image3.png]PO TR L |
idfy = log 7 =4

Figure 17: TF, IDF equations

7.9 Extended Jaccard Coefficient
Unfortunately, our term weighting strategy for coping with Zipf's law breaks the interface to our traditional Jaccard metric, since the function accepts unique sets of tokens, not vectors of float values. So instead, we replace the traditional Jaccard with the Extended Jaccard Coefficient [33] (also known as the Tanimoto Coefficient [35]), which can compute the distance between two numerical vectors (see Figure 18). Notice how the formula resembles closely to a Cosine or Inner Product (for normalized vectors) equation (see Figure 19), which can also be used to measure the similarity between two vectors by computing their respective angle. Although the jury is still not out yet on which metric is more accurate, we opted for the Jaccard function here since it has been proven to be effective in practice [33][34][36] and has an interesting morphing quality which causes the function to produce similarity values that approach Euclidean distances for smaller vectors and Cosine similarities for larger vectors [16], whereas Cosine consistently returns angular values which are vector-length invariant. Regardless, we tried out both metrics on a small sample set of query pairs and only noticed a few negligible discrepancies in the results.

[image: image4.wmf]
Figure 18: Extended Jaccard.

[image: image5.png]Sim(Q.D;) =

Figure 19: Cosine Similarity.

7.10 Learning Query Duplication
To quickly recap (also refer to the Pseudo-Code at the end of this Section), we have a distance function that takes in two SQL statements. For each query, the function cleans and parses its tokens into separate 'select', 'from', 'where', 'groupby', and 'orderby' feature sets. Then per query, we TF*IDF scale and normalize weights across each feature set. Finally, we compute the Extended Jaccard between both query's 'select' weights, 'from' weights, etc. separately, giving us the following vector result: <select_sim, from_sim, where_sim, groupby_sim, orderby_sim>. Now the question is, does this vector of floats correspond to a near duplicate query match? We frame this question as a machine learning problem. If we were given a corpus of near duplicate query string pairs (i.e. training data), we could compute each pair's similarity vector with the strategy outlined above. Then, when given two new query strings, we could compute their similarity vector and see if it is close in distance (via the Extended Jaccard) to any of the similarity vectors processed from our training data. We then choose the similarity vector from our training data that maximizes the Jaccard coefficient, and declare, with probability proportional to the coefficient value, that the two new query inputs are nearly identical. The intuition here is we want to detect whether the two queries' similarity vector resembles any of the nearly identical similarity vectors in our training data. In other words, the similarity vectors computed from the training data approximate all vectors (i.e. 'options') corresponding to how two query strings can nearly identically match each other.

7.11 Optimizations

We handpicked 1,000 pairs of nearly identical query strings and dumped them into a flat file representing our training set. To test, we developed routines to find the top 10 most identical queries (from the SQL log) to each query in a sample set. This requires computing the distances between each test input and logged query, and then comparing its result with every similarity vector in our training data set to find the maximum similarity. This scheme requires 5 * S * N * T Jaccard calls, where 5 is the number of features ('select', 'from', 'where', 'groupby', 'orderby'), S is the number of queries in the sample set, N is the number of query log records, and T is the number of query pairs in the training set. Unfortunately, given S = 10, N = 10.3M, T = 1000, more than half a trillion Jaccard's would be necessary for finding the top query matches for just a single query input!

However, since we learned that our 10.3M distinct query logs collapses down to just 98K templates, we can create a new query log table composed of just the templates, and have each entry paired with a single raw query example. This step alone makes the top-10 problem solvable in 5M Jaccard's. Additionally, we do not need to scan and compare a similarity vector with every query log record. For example, if our input query after cleaning is just 20 characters long, then why run the similarity function with log records whose query length is greater than 100? We generalize this with a user specified (, which specifies scanning query logs whose length is between the bounds len(input_query) +/- (. To optimize this further, we sort the query log templates by length (in the preprocessing stage) to make this bounded search log(n). This optimization can account for a significant constant time speed-up in our top matches computation.

7.12 Clustering

The other issue with our scheme involves the training data similarity vectors. The algorithm tries to find the maximum similarity with any training data instance. Mistakenly, this places a lot of faith in our training data selection by assuming each query pair similarity vector is equally weighted. Instead, we would like to compute the most popular similarity vector representatives to smooth out any extreme examples - and while we are at it, reduce the number of training data vectors needed by the comparison step of the query matching code. In other words, we want to compute a few similarity vectors that summarize the training set. Here, again, we face another common machine learning problem. Let’s approach this problem with K-Means clustering [38]. The goal here is to cluster the training data vectors into K clusters and return the K centroids as the summarizing similarity vector representatives. In K-Means clustering, we must specify K, the initial center points, and a distance function. In our scheme, and as supported by the literature [39], we choose the initial center points by random and plug-in our existing Extended Jaccard Coefficient as the distance function. Next, we determine the value of K based on the types of query duplicates we gathered for our training data. Given the five feature sets 'select', 'from', 'where', 'groupby', and 'orderby', we found that near duplicate query pairs typically had high similarity marks for the 'select' and 'from' feature sets, and sometimes had high marks in any unique subset of the remaining features. This empirical finding is also intuitive, since 'where', 'groupby', and 'orderby' are optional fields in a 'select' SQL query. The number of possible keyword combinations when 'select' and 'from' are fixed is eight, so we conclude that there are eight types of similarity vectors that can support a near duplicate case. As such, we plugged K = 8 into our clustering algorithm, and kept reiterating the clustering program until the outputted centroids seemed to reasonably support our expected near duplicate vector combinations.
7.13 Further Optimizations

After running the code that implements the strategy covered thus far for the top-10 queries problem, we found that the results were fairly good but the performance was awful. Our first Python version took nearly 22 minutes to complete – defeating the purpose of this system, which sets out to quickly return query suggestions to the user plus sanity check the SQL's run-time viability. However, not surprisingly, we found the bottleneck lied in comparing the input query against each of the 98K query logs. For each similarity function call, the incoming logged query is cleaned, parsed into its feature sets, and TF*IDF scaled and normalized. This adds considerable overheard per log record – in fact, more so than computing the Extended Jaccard step. As such, we preprocessed the feature sets for all query log records, which makes the average running time for the top-10 problem about 2 minutes and 30 seconds. Although a considerable speed-up, a near three-minute delay for a web user can be viewed as an eternity. Even though our algorithm can easily be multithreaded or even converted to a MapReduce [40] framework, we still sought to improve the performance of the top 10 matches (single-threaded) code for our single processor machine. We decided to add another tweaking parameter: a table sample percentage. This integer value expresses the probability of any given row in our query templates table being selected as an input to the similarity function. Basically, this parameter reduces the number of templates that will be compared against the input query. We found that a table sample of 15% consistently returned nearly the same results as the complete version, but in just 15-17 seconds - a somewhat more reasonable wait-time for an online user. The fact that record sampling works so well here just goes to show the high degree of query similarity even amongst this smaller set of unique cleaned templates. Additionally, we could further optimize the memory overhead and comparison computation by using string hash functions – however, for mainly keeping the system simple, we did not incorporate any hashing tricks into the experiments that follow.

7.14 Experiments

For the following two experiments, we assigned ((query length pad) to 5, the number of matching results to 3 (due to page real estate), and the input SQL query to:

SELECT count(*) FROM dbo.fGetObjFromRect(192.5, 192.65, 2.54, 3.3) as or, Galaxy as g WHERE or.objID = g.objID

Each experimental result, ordered by similarity descending, presents a raw SQL query example (with numerical signs substituted in to inform the user where to input the query parameters), the query’s cleaned representation, its corresponding error code, and the similarity value (at the top of each result). Also, recall that the similarity value is the Extended Jaccard of the similarity vector between the input query and the matching query, and the centroid vector (learned from the training data) that maximizes the overall Extended Jaccard similarity (refer to the Pseudo-Code). The similarity values are scaled out of 1.0, so the float values can be interpreted as percentages.

For the first experiment, we run the complete version of the algorithm (i.e. table sample set to 100%).

Experiment A: Complete Algorithm (2m38s)

#1 -- Similarity: 0.78 [No Error]

Example:

SELECT count(*) FROM dbo.fGetObjFromRect(#,#,#,#) as po Galaxy as g WHERE po.objID=g.objID
Template:

select count from fgetobjfromrect galaxy where objid compare objid

#2 – Similarity: 0.76 [No Error]

Example:

SELECT count(p.r) FROM dbo.fGetObjFromRect(#,#,#,#) b BESTDR4..Galaxy as p WHERE p.objID=b.objID
Template:

select count r from fgetobjfromrect galaxy where objid compare objid
#3 – Similarity: 0.71 [No Error]

Example:

select count(*) from Galaxy where objID = #
Template:

select count from galaxy where objid compare num

In the second experiment, we reuse the same parameters used in the first test, but set the table sample size to 15%.
Experiment B: Randomized Algorithm (17.94s)

#1 – Similarity: 0.76 [No Error]

Example:

SELECT count(p.r) FROM dbo.fGetObjFromRect(#,#,#,#) b BESTDR4..Galaxy as p WHERE p.objID=b.objID
Template:

select count r from fgetobjfromrect galaxy where objid compare objid
#2 – Similarity: 0.71 [No Error]

Example:

SELECT count(objID) FROM Galaxy WHERE (objID) % # = #
Template:

select count objid from galaxy where objid num compare num
#3 – Similarity: 0.70 [No Error]

Example:

SELECT count(p.r) p.runp.rerunp.camColp.fieldp.obj FROM dbo.fGetObjFromRect(#,#,#,#) b BESTDR4..Galaxy as p WHERE p.objID=b.objID
Template:

select count r camcolp obj from fgetobjfromrect galaxy where objid compare objid

7.15 PRESQL Pseudo-Code (Python)

def CleanRawQueryPairs(queries):

 cleaned = {}

 for q in queries:

 cq = SqlClean(q)

 if cq not in cleaned:

 cleaned[cq] = q

 return cleaned

// Input: Log of raw queries

// Output: <Template, Raw> pairs

templates = CleanRawQueryPairs(queries)

idfs = ComputeIdfs(templates)

// K-Means: K=8, Distance=ExtJaccard

// Input: SimVector’s (via Sim) per near-dup

// raw query pair in training set

centroids = KMeans(sim_vectors, K=8)

// Input: Raw query

// Parse: Tokenizes/counts terms per feature set (fs)

// Output: 5 dictionaries - 1 for each fs

def Featurize(query):

 cq = SqlClean(query)

 <select, from, where, group, order> v = Parse(cq)

 return EuclidNorm(Tfidf(v, idfs)) // Norm per fs
def SimVector(qv1, qv2):

 sim_vec = <select, from, where, group, order>

 for fs in zip(qv1, qv2):

 sim_vec[fs] = ExtendedJaccard(qv1[fs], qv2[fs])

 return sim_vec

// Main
def Sim(query_a, query_b):

 fa = Featurize(query_a)

 fb = Featurize(query_b)

 cand_sv = SimVector(fa, fb)

 sims = []

 for pair in templates:

 pf_0 = Featurize(pair[0]) // Can be preprocessed
 pf_1 = Featurize(pair[1])

 pair_sv = SimVector(pf_0, pf_1)

 s = SimVector(cand_sv, pair_sv)

 map(lambda c: sims.append(ExtJaccard(s, c)),

 centroids)

 return max(sims)
8 Some Advanced SkyServer SQL Examples

About 8K templates use explicit join verbs. Multi-way complex joins are very common. The following 8-way join is typical:

SELECT LF.BESTOBJID, LF.TARGETID

FROM MYTABLE_61 AS LF

INNER JOIN PHOTOTAG AS BP

ON LF.BESTOBJID = BP.OBJID

INNER JOIN TARGETINFO AS TI

ON TI.TARGETID = LF.TARGETID

INNER JOIN PHOTOTAG AS TP

ON TI.TARGETOBJID = TP.OBJID

INNER JOIN FIELD AS TF

ON TF.FIELDID = TP.FIELDID

INNER JOIN SEGMENT AS TS

ON TS.SEGMENTID = TF.SEGMENTID

INNER JOIN FIELD AS BF

ON BF.FIELDID = BP.FIELDID

INNER JOIN SEGMENT AS BS

ON BS.SEGMENTID = BF.SEGMENTID

LEFT OUTER JOIN SPECOBJ AS SO

ON LF.BESTOBJID = SO.BESTOBJID
Another interesting example is this 16-way join:

select count_big(distinct g.objid)
from PhotoObjAll as g

left outer join PhotoProfile as p0

on g.objId=p0.objID

left outer join PhotoProfile as p1

on g.objId=p1.objID

left outer join PhotoProfile as p2

 repeated to 15 times for each p(i)…
left outer join PhotoProfile as p14

on g.objId=p14.objID

where g.run = # and g.rerun = #

 and g.camcol = # and g.field = #

 and g.obj != #

 and ((p0.bin=# and p0.band=#)or(p0.bin is null))
repeated 15 times for each p(i)
There is also an 85-way union! There are complex sub-selects nested 7 levels deep. In general, some of the users have SQL skills that qualify them as database gurus. Indeed, the SkyServer Sample Queries page (http://skyserver.sdss.org/public/en/help/docs/realquery.asp) includes several fairly complex queries submitted by users (whose names are included in the query comments where applicable). While most of these “power users” tend to be collaboration members, there are more than a few users among the non-SDSS astronomy community who have become quite proficient in SQL after using the SDSS tools for a year or more. This is especially true of CasJobs users. This has reinforced our beliefs that even if simpler and more graphical SQL query aids are made available, there will always be a need for the capability to submit direct SQL queries, and that a significant percentage of the user community will become skilled at using SQL. This is one of the interesting sociological findings from SDSS data access patterns, although not entirely surprising as astronomers tend to be (of necessity) quite computer-savvy in general. Most of them have done at least some programming in their careers.

9 Summary

The web and SQL traffic results presented in this paper are tantalizing. Each answer suggests other questions. A few key patterns emerge from this forest of data. SkyServer traffic nearly doubled each year – both Web traffic and SQL queries grew by about 100%/year. We failed to find clear ways to segment user populations. We were able to ignore the traffic that was administrative or was eye-candy, leaving us with a set of 65M page views and 16M SQL queries. We organized these requests into about 3M sessions, about half of which came from spiders. The residue of 1.5M sessions had 51M page views and 16M SQL queries – still a very substantial corpus.

We estimate that spiders correspond to 46% of the sessions and 20% of the Web traffic. Scientific analysis programs and data downloaders constitute 3% of the sessions, 37% of the Web traffic, and 88% of the SQL traffic. Interactive human users make up 51% of the sessions, 41% of the Web traffic, and 10% of the SQL traffic.

The human traffic seems to grow a little slower than the aggregate. The yearly human growth remains exponential, but the traffic only doubles every 1.33 years.

Many of our logs exhibit remarkable power law behavior. It is well-known that long-tailed distributions emerge naturally from multiplicative processes [18, 25, 26], when the product of many factors determines the final outcome. It has been pointed out recently [19, 20, 28] that such behavior is also natural in social networking, especially so in Web-based systems where users are presented with many choices. We find such long-tailed distributions in the page views, the lengths of sessions, and also in the number of SQL requests. Some of these power laws extend the 1/f behavior over 6 orders of magnitude (e.g. see Figure 5a).

One thing that is clear, however, is that there is considerable interest in the educational site in each of the five available languages. There were 297K sessions involving two or more project pages with behavior that “looked” mortal. Those sessions had 7.4 million page views – incurring more than 21k SQL queries and delivering almost 50k hours of instruction. Few astronomy textbooks or teachers can match that record.

The SkyServer will write some SQL for you – and many users rely on the fill-in-the-form interface – but thousands of astronomers “graduated” to the free-form SQL query interface where they composed tens of thousands of complex SQL queries, and more than 500 of these astronomers have created their own private databases to run complex analysis jobs using CasJobs. There was considerable skepticism whether such a system would work at all, whether it would be useful, and whether it would be abused. So far, it has proven to be quite useful for many, and does not appear to be abused – in fact, the CasJobs service model has been successfully adopted by other astronomical archives like GALEX [21], and even non-astronomical archives like AmeriFlux [22].

In terms of interest in the data, each new data release gets a flurry of interest. First there is early mortal traffic, then an intense period of bot (program) downloading and analysis, and after that (when a new version appears) traffic subsides to a few thousand queries per month. So far, no release has gone out of use. This confirms our belief that once published, scientific data must remain online and accessible so that scientists can repeat experiments or analyses indefinitely. The fact that earlier releases like DR1 continue to get sustained usage should play a significant factor in the budgeting of data access resources for the next generation of large astronomical surveys like Pan-STARRS [23] and LSST [24].

As described in the final section, the primary basis of our SQL debugging framework, PRESQL, is the query similarity function, which enables several interesting applications such as query recommendation and fast sanity checking. Although this paper outlines steps to specialize and optimize the function for SQL text, we strongly feel many of these techniques can be generalized to other programming and even natural languages. We plan to deploy PRESQL on the SkyServer site to offer users query suggestions in syntax error cases. The service should significantly improve the user debugging experience, and help educate new SQL users on the language constructs and SkyServer’s database schemas. We hope the community will extend and deploy this platform, whether it is for internal business databases or publicly available data archives like the SkyServer.

SkyServer is an example of the new way to publish and access scientific data. It is public, and can be federated with other scientific archives and literature. We hope that this preliminary log study of the site will serve as a useful resource for others to conduct even more complex analyses.

10 Acknowledgments

This research was enabled by the dataset created by the Sloan Digital Sky Survey and by the website that hosts the data. So, this work owes a huge debt to the astronomers who designed and built the telescope, who gathered the data, who wrote the software to convert pixels into the SDSS catalog, and who ran those pipelines. Many others built the SkyServer website, CasJobs, and other web services. Others developed educational materials using the data and have translated the website into 5 different languages. This article would not have been possible without all those contributions.
Funding for the SDSS and SDSS-II has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, the U.S. Department of Energy, the National Aeronautics and Space Administration, the Japanese Monbukagakusho, the Max Planck Society, and the Higher Education Funding Council for England. The SDSS Web Site is http://www.sdss.org/.
The SDSS is managed by the Astrophysical Research Consortium for the Participating Institutions. The Participating Institutions are the American Museum of Natural History, Astrophysical Institute Potsdam, University of Basel, University of Cambridge, Case Western Reserve University, University of Chicago, Drexel University, Fermilab, the Institute for Advanced Study, the Japan Participation Group, the Johns Hopkins University, the Joint Institute for Nuclear Astrophysics, the Kavli Institute for Particle Astrophysics and Cosmology, the Korean Scientist Group, the Chinese Academy of Sciences (LAMOST), Los Alamos National Laboratory, the Max-Planck-Institute for Astronomy (MPIA), the Max-Planck-Institute for Astrophysics (MPA), New Mexico State University, Ohio State University, University of Pittsburgh, University of Portsmouth, Princeton University, the United States Naval Observatory, and the University of Washington.

Alex Szalay acknowledges support from NSF AST- 0407308, from the Gordon and Betty Moore Foundation, and the W.M. Keck Foundation. We benefited greatly from conversations with Tanu Malik and Stuart Ozer regarding the SQL query statistics. Conversations with Raul Singh, Ghaleb Abdulla, and Richard Lees about their SkyServer log analysis were also very useful. Finally, Mark Manasse’s key insight on unstructured similarity metrics helped us greatly in designing the PRESQL template-matching framework.

References
[1]
Sloan Digital Sky Survey (SDSS):http://www.sdss.org/
Data Archive Server (DAS): http://das.sdss.org/, Catalog Archive Server CAS): http://cas.sdss.org/.

[2]
A.S. Szalay, “The Sloan Digital Sky Survey,” Computing in Science & Engineering, V.1.2, 1999, pp. 54–62.

[3]
A.R. Thakar, A.S. Szalay, P.Z. Kunszt, J. Gray, “Migrating A Multiterabyte Archive from Object to Relational Databases,” Computing in Science & Engineering, V.5.5, Sep/Oct 2003, pp. 16-29.

[4]
A.S. Szalay, P. Kunszt, A.R. Thakar, J. Gray. “Designing And Mining Multi-Terabyte Astronomy Archives: The Sloan Digital Sky Survey.” SIGMOD, May 2000, pp 451-462.
[5] W. O’Mullane, N. Li, M. A. Nieto-Santisteban, A. Thakar, A.S. Szalay, J. Gray, “Batch is Back: CasJobs, Serving Multi-TB Data on the Web,” Microsoft MSR-TR-2005-19, February 2005. or CasJobs: http://casjobs.sdss.org/CasJobs/
[6] SkyServer Site Logs: http://skyserver.sdss.org/log/
[7] http://skyserver.sdss.org/log/en/traffic/privacy.asp
[8] The location of the compressed SQL2005 DB at JHU:
http://dataspace.skyserver.org/
[9] R. Lees, ThinSlicer™ http://easternmining.com.au/ Default_files/WebAndProxyAnalysis.htm
[10] B. Bhattarai, M. Wong, and R. Singh, "Multimodal Usage Visualization for Large Websites", TR-06.21, Computer Science Department, San Francisco State U., http://cs.sfsu.edu/techreports/reports_list.html
[11] M. Wong, B. Bhattarai, and R. Singh, “Characterization and Analysis of Usage Patterns in Large Multimedia Websites", TR-06.20, Computer Science Department, San Francisco State University, 2006, http://cs.sfsu.edu/techreports/reports_list.html
[12] G. Abdulla, “Analysis of SDSS SQL Server Log Fles”, UCRL- MI-215756-DRAFT. Lawrence Livermore National Laboratory, 2005

[13] T. Malik, R. Burns, A. Chaudhary. “Bypass Caching: Making Scientific Databases Good Network Citizens”. ICDE, 2005.

[14] List of User-Agents (Spiders, Robots, Crawlers, Browsers): http://www.psychedelix.com/agents/index.shtml
[15] SkyServer Sample Queries: http://cas.sdss.org/public/en/help/docs/realquery.asp.

[16] R. Kosala, H. Blockeel, “Web Mining Research: A Survey.” SIGKDD Explor. Newsl. 2, 1 (Jun. 2000), 1-15. DOI= http://doi.acm.org/10.1145/360402.360406.

[17] L. Lee, Measures of distributional similarity. Proc. 37th ACL., Morristown, NJ, 25-32. June 20 - 26, 1999.

[18] E. W. Montroll, M. F. Shlesinger. “Maximum Entropy Formalism, Fractals, Scaling Phenomena, and 1/f Noise: A Tale of Tails.” Journal of Statistical Physics 32 (1983), 209-230.

[19] A-L. Barabási, R Albert 1999 Emergence Of Scaling In Random Networks Science 286 509
[20] C. Anderson: "The Long Tail", Wired, Oct. 2004.

[21] Galaxy Evolution Explorer (GALEX): http://www.galex.caltech.edu/, and GALEX CasJobs site: http://galex.stsci.edu/casjobs/.

[22] AmeriFlux: http://public.ornl.gov/ameriflux/.

[23] Panoramic Survey Telescope and Rapid Response System (Pan-STARRS): http://pan-starrs.ifa.hawaii.edu/public/ .

[24] Large Synoptic Survey Telescope (LSST): (http://www.lsst.org/).

[25] G. K. Zipf, Human Behaviour and the Principle of Least-Effort, Addison-Wesley, Cambridge MA, 1949

[26] C. D. Manning, H. Schütze, Foundations of Statistical Natural Language Processing, MIT Press, Cambridge MA, 1999

[27] W. Li, "Random Texts Exhibit Zipf's-Law-Like Word Frequency Distribution", IEEE TOIT, V.38.6, pp.1842-1845, 1992

[28] M. Mitzenmacher, “A Brief History of Generative Models for Power Law and Lognormal Distributions,” Internet Mathematics V.1.2: 226-251

[29] N. Christianini, J. Shawe-Taylor, An Introduction to Support Vector Machines and Other Kernel-based Learning Methods, Cambridge University Press, 2000.

[30] Zql: A Java SQL Parser

 http://www.experlog.com/gibello/zql/
[31] G. Salton, M. J. McGill, Introduction to modern information retrieval, McGraw-Hill, 1983.

[32] A. McCallum, K. Nigam, “A comparison of event models for naive bayes text classification,” AAAI-98 Workshop on Learning for Text Categorization, 1998.

[33] A. Strehl, J. Ghosh, R Mooney, Impact of similarity measures on web-page clustering, Proc. AAAI Workshop on AI for Web Search, 2000.

[34] T. H. Haveliwala, A. Gionis, D. Klein, P. Indyk, “Evaluating strategies for similarity search on the web,” Proc. of the Eleventh International World Wide Web Conference, 2002.

[35] T. T. Tanimoto, “The Tanimoto Coefficient,” IBM Internal Report, 1957.

[36] A. Broder, S. Glassman, M. Manasse, G. Zweig, “Syntactic clustering of the Web,” Proceedings of the Sixth International World Wide Web Conference, 1997.

[37] A. Strehl, J. Ghosh, “Clustering Guidance And Quality Evaluation Using Relationship-Based Visualization,” Proceedings of ANNIE, 2000.

[38] J. B. MacQueen, "Some Methods for classification and Analysis of Multivariate Observations", Proceedings of 5-th Berkeley Symposium on Mathematical Statistics and Probability, 1967.

[39] J. M. Pena, J. A. Lozano, P. Larranaga, “An empirical comparison of four initialization methods for the K-Means algorithm,” Pattern Recognition Letters, 1999.

[40] J. Dean, S. Ghemawat, “MapReduce: Simplified Data Processing on Large Clusters,” Sixth Symposium on Operating System Design and Implementation, 2004.

[41] D. Eppstein, “Fast Hierarchical Clustering and Other Applications of Dynamic Closest Pairs,” ACM-SIAM Symposium on Discrete Algorithms, 1998.

[42] Microsoft SQL Server 2005 TABLESAMPLE Usage

 http://msdn2.microsoft.com/en-us/library/ms189108.aspx

��Figure 4: Think time (page-view inter-arrival time) from individual IP addresses bucketed in powers of 2 v. frequency. Most are short but some are longer than a day. We arbitrarily chose 30 minutes as the session cutoff time.

�

Figure 7: SkyServer Web page views (averaged over 3 month windows) for each language sub-site. Note the rapid growth in the Spanish, Hungarian, and Portuguese sites.

Table 3: Examples of 5 extremely long sessions�
�
Hours�
Pages�
Web Cmd Stems�
Free Form �SQL Stmts�
Methods (asp)�
�
140�
2,479,279�
1�
3,572�
x_sql�
�
103�
1,888,131�
1�
6,467�
x_sql�
�
368�
1,448,323�
2�
1,098�
GetJpeg�
�
78�
1,217,736�
1�
1�
x_rect�
�
100�
1,171,158�
1�
2,571�
x_sql�
�

�

Figure 6: Attempt to show “human” traffic: sessions that are neither admin, spider, or program. Web traffic continues to grow but SQL traffic stabilized at ~1,000 requests per day. The monthly traffic is smoothed by a 3-month moving window. Compare this figure to the “all traffic” Figure 3.

�

Figure 8: SQL traffic market share by data product.

Table 4: Main user institutions and request volumes�
�
Page Views�
SQL�
Institution�
�
4,668,124�
3,114,078�
NASA�
�
3,933,370�
104,378�
Google Inc.�
�
2,695,292�
65,226�
Johns Hopkins University�
�
2,241,295�
2,196,411�
AstroWise �
�
1,959,910�
1,884,477�
NRC Canada�
�
1,943,511�
816�
University of California �
�
1,261,638�
971,166�
University of Illinois, CCSO�
�
1,168,071�
70,628�
Microsoft Corp�
�
1,094,922�
558�
Pino Torinese Observatory �
�
728,123�
543,377�
Oxford University�
�
708,429�
806,630�
Universidad de Cantabria�
�
644,986�
458,636�
Max-Planck-Institut Garching�
�
455,061�
390,805�
Inst. Astrofisica de Canarias�
�
14,969�
770,019�
Unknown�
�

Table 5: Traffic by Domain Name “type”.�
�
type�
institutions�
page views�
SQL�
�
University�
863�
31,507,386�
8,648,855�
�
College�
407�
478,996�
1,410�
�
School�
310�
823,138�
1,890�
�
Other .edu�
169�
7,554,956�
3,509,361�
�
.gov�
238�
446,460�
83,562�
�

�

Figure 3: Aggregate SkyServer monthly traffic from 2001 to 2006. Web hits doubled every year.

�

Figure 5: Session sizes (left), as measured in page views or sql requests bucketed by powers of 2, follow an approximate power law - although sql sessions tend to be longer and spider sessions tend to be shorter. The session lengths (duration in seconds) seem to have three different behaviors: sessions less than 3-seconds are most popular; sessions lasting 3 to 1,000 seconds seem to follow a rising power law; past 1,000 seconds, session lengths seem to follow a second power law.

Table 2. Web-hit type frequency.�
�
suffix�
hits�
 Page views�
�
asp�
64,128,683�
60,111,219�
�
asmx�
43,728,961�
1,680,388�
�
jpg�
22,794,275�
0�
�
gif�
16,976,147�
0�
�
aspx�
14,559,672�
14,295,453�
�
htm�
8,777,611�
5,144,895�
�
css�
3,255,012�
3,379�
�
js�
1,527,566�
0�
�
ICO�
1,446,242�
0�
�
swf�
445,284�
0�
�
txt�
411,916�
0�
�
pdf�
81,083�
71,679�
�
exe�
77,680�
0�
�

Table 1: Overall statistics.�
�
�
Web�
SQL�
�
Log Start-Stop�
2001/04/24 2006/07/01�
2002/12/24 2006/07/01�
�
Hits / queries�
171,451,162�
20,752,863�
�
Page Views�
62,481,516�
16,123,600�
�
Unique IP�
925,666�
19,497�
�
Sessions�
2,888,279�
96,737�
�

�

Figure 1: The SkyServer hardware configuration at Fermilab as deployed in late 2006 in preparation for Data Release 8 (DR8). Note, that the analysis in this paper covers EDR, DR1 … DR4.

Table 6: Most popular web “verbs”.�
�
verb�
page views�
description�
�
x_sql�
13,393,187�
Ad hoc SQL query�
�
default�
10,394,717�
Navigation page�
�
GetJpeg�
8,929,524�
Get an object’s image�
�
x_radial�
6,023,717�
Radial DB search�
�
x_rect�
5,673,636�
Rectangular search�
�
showNearest�
3,388,016�
Nearest object to point�
�
obj�
2,511,025�
Get Photo Object by ID�
�
specById�
2,037,324�
Get Spectrogram by ID�
�
OEtoc�
1,438,447�
Object Explorer root�
�
camcol�
1,307,075�
Camera column (band)�
�
shownavi�
1,169,273�
Visual Navigation Page�
�
frameByRCFZ�
1,114,325�
Get Frame �
�

Table 7: Web site traffic by part of tree�
�
Page views�
web tree�
�
43,486,090�
tools: to use the database�
�
5,482,295�
get: data and image retrieval�
�
4,242,788�
proj: Science education projects�
�
3,986,970�
help: documentation on data and site�
�
560,198�
sdss: about SDSS�
�
549,148�
astro: about astronomy�
�
68,995�
skyserver: about Sky Server�
�

�

Figure 12: Scatter plots of the various user measures in the MyDB/CasJobs environment. The chart on the left shows how the average rows returned correlate with elapsed time. The line displays a linear relation of 500 rows per second to help guide the eye. The middle chart shows how CPU time and elapsed time track one another. The slope of the trend is only 0.937, rather than 1. A user with the average 100-second CPU time-window has an elapsed time of about 5,000 seconds, corresponding to a ratio of 50. The right hand figure shows the number of stems v. the number of jobs. The line represents the upper envelope of 1 stem per request - demonstrating that for the lower-end users, the two track one another quite well (the ridge). The higher-end users perform many more repeated queries (i.e. the number of stems per request is falling away from the envelope).

Table 8: Page views of Project website by area�
�
“area”�
pg views�
focus�
�
Advanced�
1,752,889�
Teaches astronomy.�
�
Basic�
1,075,487�
Tells what astronomy is.�
�
Kids�
489,438�
Very elementary. �
�
Teachers�
364,553�
Advice to teachers.�
�
Games�
224,888�
Hunt pictures for examples�
�
Challenges�
112,019�
Some open ended projects�
�
Links�
40,725�
Pointers to other places�
�
Mailing�
11,006�
Talk to authors�
�
High School�
3,733�
Grades 9-12�
�
Cool�
3,459�
Fun things. �
�
User�
2,134�
User registration�
�
Middle School�
840�
Grades 4-8�
�
Get Answers�
461�
Answers to exercises�
�
Lower School�
410�
Grades K-4�
�
Evaluate�
225�
Comment on site.�
�

�

Figure 9: SkyServer SQL Query traffic by data release and time. Note the very pronounced “spikes” after the data releases, and extended use of the data from DR1.

�

Figure 10: SkyServer SQL Query traffic by rows, elapsed time, CPU time and queries, versus access categories. “Antique” here represents old datasets.

�

Figure 13: Statistics of SQL-related mortal (human) sessions in the MyDB/CasJobs environment. The left figure shows the distribution of session lengths. For reference, a lognormal with a 30-minute mean is shown (purple line). The middle chart displays the frequency distribution of the average elapsed times, the average CPU times, and the number of rows delivered (in K-rows). The right hand chart shows the distribution of K-rows returned by median-length jobs lasting between 110 to 130 seconds. These three histograms are bucketed in powers of 2 using the formula round(log2(x)) to compute an integer bucket number. The rightmost graph shows a large variance in behavior with a sharp cutoff at around 1M rows – representing a limit of ~10K-rows/second that can be returned (these median queries are limited to 130 seconds). The population of each bucket is approximately constant – showing a classical Zipfian distribution – small queries are common but each successive power of 2 bucket has a comparable number of jobs (but 2x the rows, so 2x the work).

Table 9: Most popular function calls in SQL queries.�
�
verb�
queries�
�
fGetNearbyObjEq�
8,698,330�
�
fGetObjFromRect�
3,269,000�
�
fGetNearestObjEq�
661,349�
�
fGetUrlFitsCFrame�
88,453�
�
fGetNearestFrameEq�
78,625�
�
fGetNearestObjIdAllEq�
56,063�
�
fGetNearestObjIdEqType�
18,052�
�
fGetUrlFitsField�
9,016�
�
fGetObjFromRectEq�
5,638�
�

�Figure 15. Frequencies of the SQL template terms. The blue dashed line has a slope of -2, and the purple line has a slope of -4. Note the change in the slope at around rank 80.

�

� Figure 14: The frequency distribution of the top 5,000 SQL terms. The dashed line shows a -1 slope corresponding to Zipf’s Law.

�

Figure 11: SQL traffic per user, sorted by user frequency (number of jobs from that user – biggest user first). The chart on the left shows the various measures of SQL traffic: the numbers of job-stems, elapsed times, CPU times, and the number of returned rows for each user. The trend-lines use a 30-point boxcar average. The figure on the right shows the correlations between the rank and the number of requests for the 100 most active users. Note the 1/f -like behavior, resembling Zipf’s Law.

�

Figure 2: An overview of the normalized web-log and SQL-log database schema.

PAGE
1

